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Analysis of Sparse Regularization Based Robust
Regression Approaches
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Abstract—Regression in the presence of outliers is an inherently
combinatorial problem. However, compressive sensing theory
suggests that certain combinatorial optimization problems can
be exactly solved using polynomial-time algorithms. Motivated
by this connection, several research groups have proposed poly-
nomial-time algorithms for robust regression. In this paper we
specifically address the traditional robust regression problem,
where the number of observations is more than the number of
unknown regression parameters and the structure of the regressor
matrix is defined by the training dataset (and hence it may not
satisfy properties such as Restricted Isometry Property or inco-
herence). We derive the precise conditions under which the sparse
regularization ( and -norm) approaches solve the robust
regression problem. We show that the smallest principal angle
between the regressor subspace and all -dimensional outlier
subspaces is the fundamental quantity that determines the perfor-
mance of these algorithms. In terms of this angle we provide an
estimate of the number of outliers the sparse regularization based
approaches can handle. We then empirically evaluate the sparse
( -norm) regularization approach against other traditional
robust regression algorithms to identify accurate and efficient
algorithms for high-dimensional regression problems.

Index Terms—Compressive sensing, robust regression, sparse
representation.

I. INTRODUCTION

T HE goal of regression is to infer a functional relationship
between two sets of variables from a given training data

set. Many times the functional form is already known and the
parameters of the function are estimated from the training data
set. In most of the training data sets, there are some data points
which differ markedly from the rest of the data; these are known
as outliers. The goal of robust regression techniques is to prop-
erly account for the outliers while estimating the model param-
eters. Since any subset of the data could be outliers, robust re-
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gression is in general a combinatorial problem and robust algo-
rithms such as least median squares (LMedS) [19] and random
sample consensus (RANSAC) [10] inherit this combinatorial
nature. However, compressive sensing theory [3], [7] has shown
that certain combinatorial optimization problems (sparse solu-
tion of certain under-determined linear equations) can be ex-
actly solved using polynomial-time algorithms. Motivated by
this connection, several research groups [4], [13], [14], [23],
[24], including our group [18], have suggested variations of this
theme to design polynomial-time algorithms for robust regres-
sion. In this paper, we derive the precise conditions under which
the sparse regularization ( and -norm) based approaches can
solve the robust regression problem correctly.
We address the traditional robust regression problem where

the number of observations is larger than the number of un-
known regression parameters . As is now the standard prac-
tice for handling outliers, we express the regression error as a
sum of two error terms: a sparse outlier error term and a dense
inlier (small) error term [1], [13], [14], [18], [23], [24]. Under
the reasonable assumption that there are fewer outliers than in-
liers in a training dataset, the robust regression problem can be
formulated as a regularization problem. We state the condi-
tions under which the regularization approach will correctly
estimate the regression parameters. We show that a quantity ,
defined as the smallest principal angle between the regressor
subspace and all -dimensional outlier subspaces, is the fun-
damental quantity that determines the performance of this ap-
proach. More specifically we show that if the regressor ma-
trix is full column rank and , then the regulariza-
tion approach can handle outliers. Since, the regularization
problem is a combinatorial problem, we relax it to a -norm
regularized problem. We then show that if the regressor matrix
is full column rank and , then the -norm reg-
ularization approach can handle outliers. For a summary of
our main results, see Fig. 1. We also study the theoretical com-
putational complexity and empirically performance of various
robust regression algorithms to identify algorithms that are ef-
ficient for solving high-dimensional regression problems.

A. Contributions

The technical contributions of this paper are as follows:
• We state the sufficient conditions for the sparse regulariza-
tion ( and -norm) approaches to correctly solve the tra-
ditional robust regression problem. We show that a quan-
tity , which measures the angular separation between
the regressor subspace and all -dimensional outlier sub-
spaces, is the fundamental quantity that determines the per-
formance of these algorithms.

1053-587X/$31.00 © 2012 IEEE



1250 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 5, MARCH 1, 2013

Fig. 1. The main contribution of this paper is to state the sufficient conditions under which the sparse regularization ( and -norm) approaches correctly solve
the robust regression problem.

• Our Proposition II.1 and Theorem II.1 gives an estimate on
the number of outliers the sparse regularization approaches
can handle.

• We empirically compare the sparse ( -norm) regular-
ization approach with the traditional robust algorithms
to identify accurate and efficient algorithms for solving
high-dimensional problems.

B. Prior Work

Various robust regression approaches have been proposed in
the statistics and signal processing literature. We mention some
of the major classes of approaches such as LMedS, RANSAC
and M-estimators. In LMedS [19], the median of the squared
residues is minimized using a random sampling algorithm. This
sampling algorithm is combinatorial in the dimension (number
of regression parameters) of the problem, which makes LMedS
impractical for solving high-dimensional regression problems.
RANSAC [10] and its improvements such as MSAC,MLESAC
[26] are the most widely used robust approaches in computer
vision [22]. RANSAC estimates the model parameters by
minimizing the number of outliers, which are defined as data
points that have residual greater than a pre-defined threshold.
The same random sampling algorithm (as used in LMedS) is
used for solving this problem, which makes RANSAC, MSAC
and MLESAC impractical for high-dimension problems.
Another popular class of robust approaches is the M-esti-

mates [12]. M-estimates are a generalization of the maximum
likelihood estimates (MLEs), where the negative log likelihood
function of the data is replaced by a robust cost function.
Many of these robust cost functions are non-convex. Gener-
ally a polynomial time algorithm iteratively reweighted least

squares (IRLS) is used for solving the optimization problem,
which often converges to a local minimum. Many other robust
approaches have been proposed such as S-estimates [21], L-es-
timates [20] and MM-estimates [28], but all of them are solved
using a (combinatorial) random sampling algorithm, and hence
are not attractive for solving high-dimensional problems [17].
A similar mathematical formulation (as robust regression)

arises in the context of error-correcting codes over the reals [1],
[4]. The decoding schemes for this formulation are very similar
to robust regression algorithms. The decoding scheme used in
[4] is the -regression. It was shown that if a certain orthog-
onal matrix, related to the encoding matrix, satisfies the Re-
stricted Isometry Property (RIP) and the gross error vector is
sufficiently sparse, then the message can be successfully recov-
ered. In [1], this error-correcting schemewas further extended to
the case where the channel could introduce (dense) small errors
along with sparse gross errors. However, the robust regression
problem is different from the error-correction problem in the
sense that in error-correction one is free to design the encoding
matrix, whereas in robust regression the training dataset dictates
the structure of the regressor matrix (which plays a similar role
as the encoding matrix). Also, the conditions that we provide
are more appropriate in the context of robust regression and are
tighter than that provided in [1].
Recently, many algorithms have been proposed to handle

outliers in the compressive sensing framework [5], [14]. Our
framework is different from them since we consider the tradi-
tional regression problem, where there are more observations
(data points) than the unknown model parameters and we do
not have the freedom to design the regressor matrix. As an
alternative to sparse regularization based robust regression
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approaches, a Bayesian approach has been proposed in [13],
[18]. In this approach, a sparse prior [25] is assumed on the
outliers and the resulting problem is solved using the maximum
a-posterior (MAP) criterion. Another strain of related results
studies the recovery and separation of sparsely corrupted signal
[23], [24]. These results, however, rely on the coherence pa-
rameters of the regressor and outlier matrices, rather than on
the principle angle between them.

C. Outline of the Paper

The remainder of the paper is organized as follows: in
Section II we formulate the robust regression problem as a
regularization problem and its relaxed convex version, a
-norm regularization problem, and state conditions under
which the proposed optimization problems solves the robust
regression problem. In Section III we prove our main result
and in Section IV we perform several empirical experiments to
compare various robust approaches.

II. ROBUST REGRESSION BASED ON SPARSE REGULARIZATION

Regression is the problem of estimating the functional re-
lation between two sets of variables: independent variable
(or regressor) , and dependent variable (or regressand)

, given many training pairs , . In
linear regression, the function is a linear function of the vector
of model parameters :

(1)

where is the observation noise. We wish to estimate from
the given training dataset of observations. We can write all
the observation equations collectively as:

(2)

where , (the
regressor matrix) and . In this paper we con-
sider the traditional regression framework, where there are more
observations than the unknown model parameters, i.e., .
The most popular estimator of is the least squares (LS) esti-
mate, which is statistically optimal (in the maximum likelihood
sense) for the case when the noise is i.i.d Gaussian. However,
in the presence of outliers or gross error, the noise distribution
is far from Gaussian and, hence, LS gives poor estimates of .

A. Robust Regression as a Regularization Problem

As is now a standard practice for handling outliers, we ex-
press the noise variable as sum of two independent compo-
nents, , where represents the sparse outlier noise
and represents the dense inlier noise [1], [13], [14], [18], [23].
With this the robust linear regression model is given by:

(3)

This is an ill-posed problem as there are more unknowns, and
, than equations and hence there are infinitely many solutions.
Clearly, we need to restrict the solution space in order to find a
unique solution. A reasonable assumption/restriction could be
that outliers are sparse in a training dataset, i.e., there are fewer

outliers than inliers in a dataset. Under this sparse outliers as-
sumption, the appropriate optimization problem to solve would
be:

such that (4)

where is the number of non-zero elements in and is a
measure of the magnitude of the small noise . Before looking
at the case where both outliers and small noise is present, we
first treat the case where only outliers are present, i.e., .
When , we should solve:

such that (5)

Note that the above problem can be rewritten as
, and hence can be termed the regression problem. We

are interested in answering the following question: Under what
conditions, by solving the above equation, can we recover the
original from the observation ? One obvious condition is that
should be a full column rank matrix (remember ),

otherwise, even when there are no outliers, we will not be able
to recover the original . To discover the other conditions, we
rewrite the constraint in (5) as

(6)

where is a identity matrix and 1 is the aug-
mented vector of unknowns. Now, consider a particular dataset

where amongst the data points, characterized by the
index set , of them are affected by outliers.
Let these outlier affected data points be specified by the subset

. Then, (6) can be written as

(7)

where is a matrix consisting of column vectors from in-
dexed by , represents the non-zero outlier noise and

. Given the information about the index subset ,
i.e. given which data (indices) are affected by outliers, we can
recover and the non-zero outliers from (7) if and only if

is full column rank. The condition for to be full
rank can also be expressed in terms of the smallest principal
angle between the subspace spanned by the regressor, ,
and the subspace spanned by outliers, . The smallest
principle angle between two subspaces and of is de-
fined as the smallest angle between a vector in and a vector
in [11]:

(8)

Let denote the smallest principal angle between the
subspaces and , then for any vectors

and :

(9)

where is the smallest such number. We then
generalize the definition of the smallest principal angle to
a new quantity :

(10)

1Throughout this paper, we will use the MATLAB notation to mean
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i.e., is the smallest principal angle between the regression
subspace and all the -dimensional outlier subspaces.

is then the smallest number such that for any vectors
and with :

(11)

The quantity (or equivalently ) is a
measure of how well separated the regressor subspace is from
the all the -dimensional outlier subspaces. When (or
equivalently ), the regressor subspace and one of the
dimensional outlier subspaces, share at least a common vector,
whereas, when (or equivalently ), the re-
gressor subspace is orthogonal to all the -dimensional outlier
subspaces. With the definition of , we are now in a position to
state the sufficient conditions for recovering by solving the
regression problem (5).
Proposition II.1: Assume that (or equivalently

), is a full column rank matrix and .
Then, by solving the regression problem (5), we can estimate
without any error if (i.e., if there are at most

outliers in the variable).
Proof: The conditions and a full rank matrix

together implies that all matrices of the form with
are full rank. This fact can be proved by the principle of

contradiction.
Now, suppose and with satisfy the equation

(12)

Then to show that we can recover and by solving (5), it is
sufficient to show that there exists no other and , with
, which also satisfy (12). We show this by contradiction: Sup-
pose there is another such pair, say and with ,
which also satisfies (12). Then . Re-ar-
ranging, we have:

(13)

where , and .
Since and , . If denotes
the corresponding non-zero index set, then has a cardinality
of at most and, thus, is a full rank matrix. This in
turn implies that , i.e. and .
From the above result, we can find a lower bound on the max-

imum number of outliers (in the variable) that the regression
(5) can handle in a dataset characterized by the regressor matrix
. This is given by the largest integer such that .

B. Robust Regression as a -Norm Regularization Problem

The regularization problem (5) is a hard combinatorial
problem to solve. So, we approximate it by the following convex
problem:

such that (14)

where the term is replaced by the norm of . Note that the
above problem can be re-written as , and hence
this is the regression problem. Again, we are interested in the
question: Under what conditions, by solving the regression

problem (14), can we recover the original ? Not surprisingly,
the answer is that we need a bigger angular separation between
the regressor subspace and the outlier subspaces.
Fact II.1: Assume that (or equivalently

), is a full column rank matrix and .
Then, by solving the regression problem (14), we can esti-
mate without any error if (i.e., if there are at most
outliers in the variable).
Proof: Proved as a special case of the main Theorem II.1.

Similar to the regression case, we can also obtain a lower
bound on the maximum number of outliers that the regression
can handle in the variable; this is given by the largest integer
for which .
Next, we consider the case where the observations are cor-

rupted by gross as well as small noise. In the presence of small
bounded noise , we propose to solve the following
convex relaxation of the combinatorial problem (4)

such that (15)

The above problem is a related to the basis pursuit denoising
problem (BPDN) [6] and we will refer to it as basis pursuit ro-
bust regression (BPRR). Under the same conditions on the an-
gular separation between the regressor subspace and the outliers
subspaces, we have the following result.
Theorem II.1: Assume that (or equivalently

), is a full column rank matrix and
with . Then the error in the estimation of , , by
BPRR (15) is related to , the best -sparse approximation of
, and as:

(16)

where is the smallest singular value of , and , are
constants which depend only on ( ,

).
Note that if there are at most outliers, and the esti-

mation error is bounded by a constant times . Further-
more, in the absence of small noise , we can recover
without any error, which is the claim of Fact II.1. We prove our
main Theorem II.1 in the next Section.

III. PROOF OF THE MAIN THEOREM II.1

The main assumption of the Theorem is in terms of the
smallest principal angle between the regressor subspace,

, and the outlier subspaces, . This angle is
best expressed in terms of orthonormal bases of the subspaces.
is already an orthonormal basis, but the same can not be said

about . Hence we first ortho-normalize by the reduced QR
decomposition, i.e. where is an matrix
which forms an orthonormal basis for and is an
upper triangular matrix. Since is assumed to be a full column
rank matrix, is a full rank matrix. Using this decomposition
of , we can solve (15) in an alternative way. First, we can
substitute and solve for from:

such that (17)
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We can then obtain from . This way of solving
for is exactly equivalent to that of (15), and hence for solving
practical problems any of the two approaches can be used. How-
ever, the proof of the Theorem is based on this alternative ap-
proach. We first obtain an estimation error bound on and then
use to obtain a bound on .
For themain proof wewill need somemore results. One of the

results is on the relation between and a quantity , defined
below, which is very similar to the concept of restricted isometry
constant [4].
Definition III.1: For orthonormal matrix , we define a con-

stant , as the smallest number such that

(18)

for all with cardinality at most .
Lemma III.1: For orthonormal regressor matrix , ,

.
Proof: From definition of , for any (with ),

and :

(19)

where we have used and
since and are orthonormal matrices. Writing ,

is given by

(20)

Note that, from the definition of , the above inequality is tight,
i.e., there exists and for which the inequality is satisfied with
an equality. Using the fact we get

(21)

Further, using the fact , we get
. Using the inequality

, it is easy to show that
. Thus, we have

(22)

which implies . However, there exists which
satisfies both the inequalities (20) and (21) with equality and
hence .
The proof of the main Theorem parallels that in [2]. Suppose

for a given , (z,s) satisfy with .
And let and be the solution of (17) for this . Then

(23)
This follows from the triangle inequality and the fact that both

and are feasible for problem (17). Let
and . For the rest of the proof, we use the following
notation: vector is equal to on the index set and zero else-
where.2 Now, let’s decompose as ,
where each of the index set , , is of cardinality

2Note that we have used the subscript notation in a slightly different sense
earlier. However, it should be easy to distinguish between the two usages from
the context.

except for the last index set which can be of lesser cardinality.
The index corresponds to the locations of largest coeffi-
cients of , to the locations of largest coefficients of ,
to that of the next largest coefficients of and so on. In the
main proof, we will need a bound on the quantity ,
which we obtain first. We use the following results from [2]:

(24)

and

(25)

These results correspond to (10) and (12) in [2], with some
changes in notations. The first result holds because of the way
has been decomposed into , and the second

result is based on , which holds because
is the minimum -norm solution of (17). Based

on the above two equations, we have

(26)

where we have used the inequality and
is defined as . Since by definition ,

the best -sparse approximation of , and hence
. With these results, we are in a position to

prove Theorem II.1.
Proof of Theorem II.1: Our goal is to find a bound on ,

from which we can find a bound on . We do this by first
finding a bound for through bounds on the quantity

. Using , we get

(27)

Using triangular inequality, the first term in the right hand side
can be bounded as

(28)
Since is sparse, using (22), we get

Further, using the bound , see (23), we get

(29)
Now, we look at the second term in the right hand side of
(27). Since the support of and are different,

for all , and we get
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where we used the definition of and the fact that
is -sparse, and hence also sparse. Further, using (26),

and

(30)

The quantity can be further bounded by
(by applying the inequality ).

Therefore,

(31)

Finally, we obtain the following bound for

Since is sparse, from (22), we get

(32)

From the above two equations, it follows that

(33)

Since is an assumption of the Theorem, ,
and hence

(34)

Since , we obtain

(35)

Using the definition , we get ,
where is the spectral norm of . Note that the spec-
tral norm of is given by its largest singular value, which is
the reciprocal of the smallest singular value of . Further, since

and share the same singular values,
, where is the smallest singular value of . Hence, we

have the final result

(36)

IV. EMPIRICAL STUDIES OF THE ROBUST
REGRESSION ALGORITHMS

In the previous Section, we have shown that if is full
column rank and (where is the smallest
principal angle between the regression and -dimensional

outlier subspaces), then the -norm regularization approach
(BPRR) can handle outliers. However, computing the quan-
tity is in itself a combinatorial problem. Hence, there is
no easy way to characterize the performance of BPRR. In this
Section we empirically characterize the performance of BPRR
and compare it with other robust approaches. We classify
the robust approaches into two major classes: 1) tradition
approaches such as M-estimators, LMedS, RANSAC and 2)
approaches based on compressive sensing theory such as the
BPRR and a Bayesian alternative to the sparse regularization
approach proposed in [13], [18]. Three important parameters
of the robust regression problem are: fraction of outliers in the
dataset , dimension of the problem and inlier noise variance
. We study the performances of the algorithms with respect

to these parameters. The performance criteria are estimation
accuracy and computational complexity. In Section IV-A we
briefly introduce the robust approaches and discuss the theo-
retical computational complexity of their associated algorithms
and in Section IV-B we empirically study the performance of
these algorithms.

A. Robust Regression Approaches and Computational
Complexity of Their Associated Algorithms

1) Compressive Sensing Based Robust Approaches:
• BPRR: We formulate BPRR (15) as a second order cone
programming problem. Since there are variables
and one cone constraint of dimension , the computational
complexity of this algorithm is [15].

• Bayesian Robust Regression (BRR): As an alternative to
the sparse regularization approach, a Bayesian approach
was proposed in [13], [18] towards solving the robust re-
gression problem (4). In this approach the outliers are mod-
eled by sparse priors [25] and they are then estimated using
the MAP criterion (see [18] for more details). The main
computational step of this approach (BRR) is the MAP es-
timation step whose computational complexity is .

2) Traditional Robust Approaches:
• -estimates: In M-estimates [12] a robust cost function

of the residual error ,
is minimized:

(37)

where the robust function should satisfy certain
properties (see [12]). In our experiments, we have used
the popular Tukey’s biweight function which is a robust
but non-convex function. The IRLS algorithm, which is
used for solving the optimization problem, is a polyno-
mial time algorithm with a computational complexity of

per iteration [17].
• LMedS: In LMedS the median of the residual error is
minimized, i.e.,

(38)
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This problem is solved by a random sampling algorithm,
which is combinatorial in the dimension of the problem
[10], [20]. Thus, LMedS becomes impractical for solving
high-dimensional problems.

• RANSAC: In RANSAC the model parameter is estimated
by minimizing the number of outliers (which are defined
as data points that have residual greater than a pre-defined
threshold):

such that (39)

where is the pre-defined threshold and is related to the
standard deviation of the inlier noise. The same combinato-
rial random sampling algorithm as used in LMedS is used
for solving this problem, which makes it impractical for
solving high-dimensional problems.

B. Empirical Studies

We perform a series of empirical experiments to charac-
terize the performance of the robust regression approaches.
For each trial in the experiments, we generate the dataset

, , , , and the model
parameters in the following manner: ’s are obtained
by uniformly sampling a -dimensional hypercube centered
around the origin and is a randomly sampled from a standard
Gaussian random variable. Depending on the outlier fraction
, we randomly categorize the indices into either inlier or
outlier indices. The ’s corresponding to the inlier indices are
obtained from , where is the inlier noise, which
we choose to be a Gaussian random variable . The
corresponding to the outlier indices are obtained by uniformly
sampling the interval , where . Regression
accuracy is measured by the estimation error . BPRR,
BRR and RANSAC need estimates of the inlier noise standard
deviation, which we provide as the median absolute residual
of the regression. In our experiments, we have used the
MATLAB implementation of bisquare (Tukey’s biweight)
M-estimates, other M-estimates give similar results.
1) Studies by Varying the Fraction of Outliers: In the first

experiment, we study the performance of the robust approaches
as a function of outlier fraction and dimension. We generate

synthetic data with inlier noise standard deviation
. Fig. 2 shows the mean estimation error over 20

trials vs. outlier fraction for dimension 2 and 25. For dimension
25, we only show BPRR, BRR and M-estimates as the other
approaches, LMedS and RANSAC, are combinatorial in nature
and hence very slow. Fig. 2 suggests that, overall, compressive
sensing based robust approaches perform better than the tradi-
tional approaches.
2) Phase Transition Curves: We further study the perfor-

mance of the robust approaches with respect to outlier fraction
and dimension using phase transition curves [8], [9]. In com-
pressive sensing theory, where the goal is to find the sparsest so-
lution for an under-determined system of equations, it has been
observed that many algorithms exhibit a sharp transition from
success to failure cases: For a given level of under-determinacy,
the algorithms successfully recovers the correct solution (with
high probability) if the sparsity is below a certain level and fails

Fig. 2. Mean estimation error vs. outlier fraction for dimension 2 and 25 re-
spectively. For dimension 25 we only show the plots for BPRR, BRR and M-es-
timator, as the other approaches (LMedS and RANSAC), being combinatorial
in nature, are very slow. This plot suggests that, overall, compressive sensing
based robust approaches perform better than the traditional approaches.

to do so (with high probability) if the sparsity is above that level
[8], [9], [16]. This phenomenon is termed phase transition in
the compressive sensing literature and it has been used to char-
acterize and compare the performances of several compressive
sensing algorithms [16]. We also use this measure to compare
the various robust regression algorithms. In the context of robust
regression, the notion of under-determinacy depends on and
. Since, there are observations and unknowns, by

varying for a fixed we can vary the level of under-determi-
nacy. The notion of sparsity is associated with the outlier frac-
tion. Hence, to obtain the phase transition curves, we vary the
dimension of the problem for a fixed and for each find
the outlier fraction where the transition from success to failure
occurs.
As before, we choose and . We vary

over a range of values from 1 to 450. At each , we vary the
outlier fractions over a range of values and measure the fraction
of trials in which the algorithms successfully found the correct
solution.3 Fig. 3(a) shows the fraction of successful recovery
vs. outlier fraction for dimension 125 for approaches BPRR,
BRR and M-estimators (we do not show LMedS and RANSAC
as these approaches are very slow). From this Figure we con-
clude that each of the approaches exhibit a sharp transition from
success to failure at a certain outlier fraction. This confirms
that phase transition do occur in robust regression also. Next,
for each regression approach and dimension, we find the out-
lier fraction where the probability of success is 0.5. Similar to
[16], we use logistic regression to find this outlier fraction. We
then plot this outlier fraction against the dimension to obtain
the phase transition curves for each of the approaches. Fig. 3(b)
shows the phase transition curves for BPRR, BRR and M-es-
timators. Again, compressive sensing based robust approaches
(especially BRR) gives very good performance.
3) Studies by Varying the Amount of Inlier Noise: We also

study the effect of inlier noise variance on the performance of
the approaches. For this we fixed the dimension at 6, the outlier
fraction at 0.4 and the number of data points at 500. Fig. 4 shows
that all approaches, except for LMedS, perform well.
Finally based on the above experiments, we conclude

that overall compressive sensing based robust approaches
(especially BRR) perform better than the traditional robust
approaches. It has been suggested in [27] that the sparse

3We consider a solution to be correct if .
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Fig. 3. Subplot (a) shows recovery rate, i.e. the fraction of successful recovery,
vs. outlier fraction for dimension 125 of BPRR, BRR and M-estimators. From
this plot we conclude that each of the approaches exhibit a sharp transition from
success to failure at a certain outlier fraction. Subplot (b) shows the phase tran-
sition curves for BPRR, BRR and M-estimator. The phase transition curve for
any approach is obtained by computing for each dimension the outlier fraction
where the recovery rate is 0.5. From the phase transition curves we conclude
that the compressive sensing based robust approaches (especially BRR) gives
very good performance. (a) Recovery rate vs. outlier fraction; (b) phase transi-
tion curves.

Fig. 4. Mean angle error vs. inlier noise standard deviation for dimension 6
and 0.4 outlier fraction. All approaches, except for LMedS, perform well.

Bayesian approach (BRR) is a better approximation of the
regularization problem than the -norm formulation, which
might explain the better performance of BRR over the BPRR.
However, analytical characterization of the Bayesian approach
is very difficult and could be an interesting direction of future
research.

V. DISCUSSION

In this paper we addressed the traditional robust regression
problem and stated the precise conditions under which sparse
regularization ( and -norm) approaches can solve the robust
regression problem. We showed that (the smallest principal
angle between the regressor subspace and all -dimensional out-
lier subspaces) is the fundamental quantity that determines the
performance of these algorithms. Specifically, we showed if the
regressor matrix is full column rank and , then the
regularization can handle outliers. Since, optimization is a
combinatorial problem, we looked at its relaxed convex version
BPRR. We then showed that if is a full column rank matrix
and , then BPRR can handle outliers.
However, computing the quantity is in itself a combina-

torial problem. Hence, we characterize the BPRR algorithm
empirically and compare it with other robust algorithms such
as M-estimates, LMedS, RANSAC and a Bayesian alternative
to the sparse regularization approach (BRR). Our experiments
show that BRR gives very good performance. It has been

suggested in [27] that the sparse Bayesian approach is a better
approximation of the regularization problem than the -norm
formulation, which might explain the better performance of
BRR over the BPRR. However, analytical characterization of
the Bayesian approach is very difficult and is an interesting
direction of future research. Another interesting direction of
future research would be to find greedy algorithms that can
provide lower and upper bounds on the quantity .
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